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Abstract

As the amount of available electronic information is dramat-
ically increasing, the ability for rapid and e�ective access to
information has become critical. Most traditional informa-
tion access methods rely on measures of relevance based on
information content. We propose a new approach which
augments existing information access methods with subjec-
tive relevance learned from user feedback. We developed an
adaptive system which helps users access information by em-
ploying learned knowledge about which documents are likely
to be relevant, given the current user's information need and
user pro�le. This system is based on a model, called a rele-
vance network, which learns and generalizes relevance infor-
mation in a rapid, cost-e�ective, and incremental manner.
We present the design of the relevance network and results
of experimental evaluation.

1 Introduction

We are currently witnessing an explosion in the amount of
information that is available on-line. This has created the
need for new tools to assist people in quickly and e�ectively
locating information. There are several ways to access in-
formation: traditional information retrieval [13, 7] builds a
content-based index of all the documents; model-based in-
formation retrieval [3] requires a knowledge representation
structure of the information domain; browsing (e.g., Mosaic)
lets the user follow pre-authored information structures or
hyperlinks. While these approaches add tremendous power
to information access, they require extensive a priori con-
struction of domain speci�c index information, hence are
not always suitable for quick access to various information
sources with dynamically changing individual needs.

We propose relevance network, an adaptive information
access model independent of speci�c information domains.
The model does not rely on customized data organization or
content-based indexing. It learns subjective relevance infor-
mation from user feedback for individual users or particular
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user groups. Information preferences of speci�c queries are
memorized rapidly, and generalized over time for future re-
trieval with similar queries. As a component within a large
information access system, the relevance network provides
user-oriented customization facilities, which modify and �l-
ter relevance information provided by other means of re-
trieval.

2 Related Work

Relevance feedback methods in conventional information re-
trieval [13, 9] improve immediate retrieval performance by
modifying the current query, based on user feedback on pre-
vious retrievals and existing domain information. Similarly,
other adaptive information access methods often rely on spe-
cialized retrieval structures (semantic index) whose parame-
ters get tuned by use, and require a large amount of a priori
knowledge [8, 4]. Connectionist approaches require an ex-
tended training period to attain a state of fertility [1, 5].
The relevance network, in contrast, establishes relevance in-
formation directly through user feedback, without resorting
to pre-de�ned knowledge or extensive training.

Adaptive interactive systems [14] is a very active research
area. The canonical knowledge-intensive user modeling ap-
proach requires a priori encoding of both user and domain
models [15]. These models are costly and di�cult to ac-
quire, and cannot easily be updated or customized during
use [2]. Other approaches rely on individual user models
dynamically learned by observing user's behavior [6]. These
methods need large data collections before the models be-
come useful.

Our relevance network illustrates the idea of a learning
agent applied to information �ltering [11]. It is more closely
related to the adaptive hypertext navigation approach pro-
posed by Kaplan et al. in [10]. Their model memorizes user
preferences in an associative matrix, but does not generalize
the information for di�erent usage.

3 Adaptive Information Access

We give an overview of our method for adapting informa-
tion access to individual users pro�les. Our method utilizes
a relevance network which does not rely on any a priori
knowledge, and interactively learns information relevance
from end-users during information access. In a single user
mode, the system provides faster access to hundreds of doc-
uments. In a multi-user collaborative mode, the system sup-
ports the creation of a corporate memory about documents



Figure 1: Adaptive information access overview

relevant to particular user groups (a group's network), and
it reduces the learning time for novices. It fosters collabo-
ration among users by letting them access and share doc-
uments found relevant by other users with similar pro�les.
To bootstrap the network learning curve, the network can
be initialized with a sample set of documents returned by a
preliminary call to a traditional search engine, or better yet
using a colleague's network, or a group's network.

The model is intended to work in conjunction with other
information retrieval or hypertext systems, which provide
non-adaptive information access (Figure 1). Users access
information by executing an explicit query (resp. by select-
ing a hypertext link). Non-adaptive information access is
performed by a search engine using stored indices (resp. an
hypertext system using stored hypertext links). Adaptive
information access is performed by our adaptive system us-
ing knowledge stored in the relevance network, pertaining
both to indices and links.

The following scenario describes a typical information re-
trieval interaction with our adaptive system [12]. The user
�rst speci�es a query and relevance �lter. The query is com-
posed of a list of keywords (e.g., "telescope", "solar array")
selected from the document full text index. The relevance
�lter is composed of a user pro�le, or list of tasks used to
personalize the search for relevant documents (e.g., "astro-
naut", "on-orbit", "repair"). The user can choose to use
his/her personal relevance network, one of the networks pub-
lished by his/her colleagues, or one of the group networks
which integrate feedback from several users. The last two
options support knowledge sharing among users, by letting
them access adaptations done by others.

Using learned knowledge stored in the selected relevance
network, the adaptive system retrieves and displays a ranked
list of references likely to be relevant, given the current user's

query and pro�le. These references were either found rele-
vant earlier for the same query and user pro�le (memoriza-
tion function of the network), or are derived from references
found relevant for similar queries or user pro�les (general-
ization function).

When the user �nds an interesting reference, she/he marks
it as relevant by giving positive feedback to the system. The
tasks for which this reference is considered relevant may be
similar to the tasks used to access the reference, or can be
speci�ed by the user upon feedback. Users may provide
feedback for any reference, retrieved with the network, or
accessed through other non-adaptive methods of retrieval.
This prevents the system from narrowing its suggested list
of references over time. The adaptive system then memo-
rizes in the user's relevance network that this reference was
found relevant under the given query and feedback pro�le,
and generalizes this relevance information for future queries.

In the following section, we describe the structure of the
relevance network, its learning and retrieval methods, and
the management of a dynamic network architecture.

4 A Compositional Relevance Network

A compositional relevance network models user preferences
on information relevance with respect to given tasks. This
network provides a domain independent information archi-
tecture which facilitates incremental storage of both rele-
vance information provided by users, and relevance infor-
mation computed through other traditional retrieval tech-
niques. The network memorizes information on the rele-
vance of references based on user feedback for speci�c queries
and pro�les. It also aggregates and generalizes such infor-
mation to facilitate future retrievals with similar queries and
pro�les.



4.1 Relevance Network

A relevance network records measures of relevance of out-
put nodes with respect to input nodes. For information re-
trieval purposes, an output node corresponds to a reference,
which can be a document or any marked location within a
document. There are two types of input nodes: basic and
composite nodes. A basic input node corresponds to a de-
scriptor. A descriptor can be a keyword in the index, a
sequence of words in the text, or a user-de�ned task in a
user pro�le. A descriptor can also be a reference, in order
to retrieve other related references. A composite input node
corresponds to a combination of query descriptors. Com-
posites nodes are de�ned in section 4.2.

Figure 2: An example of a simple relevance network
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Figure 2 shows an example of a simple relevance net-
work with only basic input nodes. Nodes in the top layer
represent output nodes. Nodes in the lower layer represent
input nodes. A user query is interpreted as an input activa-
tion pattern by the relevance network. A Boolean activation
value of an input node denotes whether the corresponding
descriptor is a member of the current query. An activation
value on an output node denotes the relevance of the cor-
responding reference, conditioned by the current user query
encoded in the input layer.

Associated with each connection from an input node to
an output node is a relevance measure between the corre-
sponding descriptor and reference. A network is initially
empty1. As a user speci�es queries and provides positive or
negative feedback on the relevance of retrieved references,
input and output nodes that do not exist yet in the network
are created, and relevance measures associated with the con-
nections are adjusted accordingly. A relevance measure, in
its simplest form, is de�ned as the relative frequency of pos-
itive user feedback for a reference given a descriptor. Each
relevance measure is maintained as two parts of a fraction:
the number of positive feedback, S, over the number of total
feedback, N . That is, a relevance measure Rij of a reference
j with respect to a descriptor i is

Rij =
Sij
Nij

=
NumberOf(PositiveFeedback)

NumberOf(Feedback)

Maintaining the total number of feedback in the denomina-
tor facilitates an accurate recording of both the relevance of
the reference and the sampling precision of such relevance.

4.2 Composite Nodes

1When the relevance network is empty, references relevant to a
query can be accessed through other retrieval means provided by the
application interface. A relevance network can also be initialized us-
ing information attained with other retrieval techniques.

Figure 3: Input layer of a relevance network with compos-
ite nodes. Links denote subset relations. Output nodes and
relevance connections are not displayed.
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The relevance model described thus far records only rel-
evance information based on single descriptors. User pref-
erences for particular composite queries cannot be saved,
and non-trivial relations2 between references and descriptors
cannot be encoded. To retain better information from user
feedback, the relevance network accommodates composite
nodes in the input layer, as illustrated in Figure 3. It is as-
sumed that the relevance information associated with a com-
posite node is more speci�c than the information associated
with its nested subset nodes or its basic input nodes (corre-
sponding to its descriptors). Therefore, during retrieval, a
user query is �rst matched against highest level composite
nodes, rather than lower level nodes. The use of composite
nodes enables the system to derive more accurate relevance
measures learned from previous queries.

Composite nodes are added to the network in two ways.
A new composite node, corresponding to a user query, is
added to the relevance network when a user provides feed-
back upon retrieval. A second composite node addition
method based on co-occurrence statistics of query descrip-
tors is discussed in 4.5.3.

4.3 Learning Relevance Measures From User Feedback

When a user provides positive or negative feedback for a ref-
erence given the current query, this relevance information is
memorized and generalized. To memorize feedback informa-
tion on speci�c queries, relevance of the connection between
the reference and the composite node corresponding to the
query is updated. If such a connection does not already ex-
ist, a new connection is created and the relevance measure
initialized3 . If a composite node corresponding to the query
does not exist, a new composite is created with associated
relevance information derived from that of its components.
The derivation algorithm is described in 4.4.2.

To derive generalized relevance measures for new queries
in the future, nodes which are more general than the user
query inherit feedback: relevance measures from all proper
query subsets including basic input nodes are updated. We
describe below how relevance measures are updated or ini-
tialized.

2e.g., a reference relates to fApple, Computerg but does not relate
to fAppleg.

3The user can choose to give feedback on any reference s/he has
access to (not only on these references retrieved from the network),
thus automatically indexing this reference with the current set of
query descriptors.



4.3.1 Updating Relevance Measures

As mentioned above, relevance measures from an input node
can be adjusted either through direct user feedback from
a query of the same composition as that node, or through
feedback inherited from its superset composite nodes. Direct
feedback provides more accurate information pertaining to
the node than inherited feedback. To compromise between
memorization and generalization, a weight constant integer
C � 1 is added to the relevance feedback adjustment: if C =
1, inherited feedback is as important as direct feedback; and
the relative importance of inherited feedback decreases when
C increases. Relevance measures are updated as follows:

Rnew =
Snew
Nnew

=
Sold + � � �

Nold + �
; where

� =

�
1 for positive feedback
0 for negative feedback

� =

�
1 for inherited feedback
C for direct feedback

As mentioned in section 4.1, maintaining relevance mea-
sure as a fraction provides additional information on the
precision of the measure. To accommodate more recent
changes into the relevance network, a maximal threshold
on the denominator is speci�ed. When the number of to-
tal feedback exceeds this threshold, the denominator is no
longer incremented, instead, a momentum term is used in
the calculation:

Rnew =
Snew
Nnew

=
Sold
Nmax

� �+ � � (1� �);

where � is the momentum, 0 � � � 1, and Nmax the max-
imal threshold for number of total feedback. Since Nnew

must equal Nmax in this case,

Snew = Sold � �+ � � (1� �) �Nmax

For consistency with the relevance adjustment formula
where the denominator is smaller than the maximum thresh-
old, the momentum is typically set accordingly as: � =
(Nmax � �)=Nmax

4.3.2 Initializing Relevance Measures

Relevance measure for a new connection is initialized with
Sold = 0;Nold = K. K, a positive integer, corresponds to
an initial negative bias. With this initial bias, the relevance
measure asymptotically approaches one with the increase of
the rate of positive feedback. The scale of relevance thereby
provides better resolution for positive relevance information,
and is biased against relevance measures with lower feedback
frequency, which are assumed to indicate lower con�dence
of relevance accuracy.

4.4 Retrieval of Relevant References

In response to a query, the network retrieves and displays
a list of references with the highest relevance measures. A
query is assumed to be semantically constructed as a con-
junction of member descriptors. Relevance measures are
derived from nodes most speci�cally related to the query.
Equal importance is given to all query descriptors. And for
each descriptor, relevance measures from composite nodes
are pooled together according to their statistical accuracy.
This retrieval algorithm is illustrated on Figure 4, and de-
tailed in the following paragraphs.

Figure 4: An example of retrieval by derivation from subset
query nodes for one reference
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4.4.1 Retrieval by exact match

Upon presentation of a query, if a composite node corre-
sponding to the query already exists in the network, the
relevance measures from that node to associated references
are directly used to generate a ranked list of relevant refer-
ences.

4.4.2 Retrieval by derivation

If a matching composite node does not exist, relevance mea-
sures from other input nodes, corresponding to proper sub-
sets of the query, are used to derive a list of relevant refer-
ences. For a relevance network with only basic input nodes,
a simplistic estimate of relevance of a reference with respect
to a query can be taken as the product of the relevance
measures of that reference with respect to the descriptors of
the query. The use of multiplicative estimation assumes no
weighting information among individual query descriptors,
and gives higher relevance to references of uniform relevance
to all query descriptors.

With the presence of composite nodes corresponding to
query subsets, relevance information is derived only from
the top-level subsets, i.e., the ones not nested within other
subsets. However, relevance measures for a query cannot
be appropriately obtained by simply taking the product of
top-level subsets relevance measures. Top-level subsets of a
query can be of di�erent sizes, and are not necessarily dis-
joint. References connected from one composite node may
not be connected from another. Multiplicative measures,
therefore, can be biased toward certain query components.
We propose a heuristic derivation algorithm intended to pro-
vide impartial relevance estimations. For simplicity, we de-
scribe the relevance derivation algorithm for a single refer-
ence R, hence subscript reference indices are neglected in
the formulae that follow.

For each individual descriptor in a query, a pooled es-
timate of relevance measure is obtained from the top-level
subsets which contain that descriptor. Let CompQ denote
the set of descriptors in the user query Q, and Stop the set
of top-level subsets of Q. The pooled estimate of relevance
for a descriptor di in CompQ is

PEi =

P
j
SjP

j
Nj

;

where the sums are taken over all j where Compj 2 Stop



and di 2 CompQ
Relevance measure of reference R for the query Q is then

computed as

RelevanceRQ = n

s Y
i2CompQ

PEi;

where n is the size of CompQ.
The derived relevance measures are then used to generate

an ordered list of suggested references.
In a query derivation where no subset composite node is

present in the network, the algorithm degenerates to sim-
ple multiplicative derivation over basic input nodes. When
applied to a query with disjoint top- level subsets, the al-
gorithm reduces to taking the root of the product of all
top-level subsets, each to the power of its own size.

4.4.3 Partial Match Derivation

To alleviate limitations imposed by the assumption of con-
junctive queries, the network also supports the derivation
of partial match results. Choices of the level of match are
given to the users.

In partial match mode, the network generates additional
references related to some, but not all descriptors of the
query. In order to display these references in appropriate
ranking relative to the fully matched references, a missing
relevance value is introduced into the multiplicative deriva-
tion formula, as an estimate of relevance associated with a
missing connection from a query descriptor to a reference.
The value of missing relevance is also used in connection-
trimming discussed in 4.5.4.

4.5 Managing Network Size And Capacity

4.5.1 Computing Cost and the Importance of Capacity
Management

The primary cost of computing time in the use of a compo-
sitional relevance network is associated with the relevance
derivation algorithm, which requires a search of composite
nodes corresponding to all proper query subsets. In theory,
this search can be computationally exponential with respect
to the size of the query, due to the combinatorial large num-
ber of possible top level subsets. For pragmatic information
retrieval purposes, however, the number of descriptors in a
query is usually small, and only a very small percentage of
all possible combinations of query descriptors are likely to be
present in the network as subset composite nodes. Also, this
cost of computing time is in the worst case linearly bound by
the total number of composite nodes in the network. Thus
the computational complexity of the derivation algorithm is
not of realistic concern, provided that the number of com-
posite nodes and the distribution of these nodes are well
managed.

While the memorization capacity of a network increases
with the number of composite nodes it contains, unneces-
sary composite nodes can potentially inhibit generalization
of retrieval. Higher level large composites carry relevance in-
formation more speci�c to particular queries, whereas lower
level smaller composites carry more general feedback infor-
mation propagated from many queries. Relevance measures
associated with larger composites, however, may also have
less statistical accuracy since these composites receive less
feedback from users. Managing the network capacity is
therefore not only important in assuring control of the com-
puting cost, but also important in maintaining a balance

between the capacity of memorization and that of general-
ization.

4.5.2 Cutting Composite Nodes

A node cutting procedure is employed to control the size
of a compositional relevance network. A maximal number
of composite nodes allowed in a network can be speci�ed.
When a new composite node needs to be inserted, and if
the network has reached its speci�ed size limit, an existing
composite node with the least frequency of usage is removed
to make room for the new one. The frequency of usage of
a composite node is calculated by recording the number of
times the node is used in query execution. In addition, it
is also incremented when the composite node receives direct
user feedback. The purpose of this feedback-based usage
update is to give more weight to composite nodes which
carry information that cannot be easily derived.

The frequency of usage is a direct measure of how often
a node is used for user queries. More subtly, it also serves
as a measure of the con�dence level of information accuracy
associated with a node. The choice of removing nodes with
the least frequency of usage ensures that the composites that
remain in the network are the ones with most dependable
relevance information.

4.5.3 Adding Composite Nodes

The query-based composite node creation method described
in section 4.2 is intended to ensure quick learning of user
preference by memorizing relevance information. Ideally,
these nodes would also become useful components of the
relevance network information structure, to derive relevance
information for new queries. Unfortunately, smaller compos-
ites are less likely to enter the network since the relevance
information they are associated with may be too general to
be used as speci�c queries by users . Yet these smaller com-
positions may be of great importance for a network to assure
e�ective encoding of relevance information.

A node creation method based on co-occurrence of query
descriptors is devised to extract compositions important to
the relevance network information structure. The network
maintains a record of recently submitted user queries, and
periodically generates statistics on sets of descriptors that
often appear together in di�erent queries. A simple for-
mula is currently used to calculate co-occurrence statistics
of query descriptors over a collection of queries:

Cs =
fs

size(s)
pQ

i2s
fi

where Cs denotes the co-occurrence measure of descriptors
in set s, fs denotes the frequency of set s appearing in
queries, and fi the frequency of descriptor i in queries.

Composite nodes consisting of query descriptors of high
co-occurrence statistics are then automatically added to the
relevance network. Composite creation based on co-occurrence
across queries facilitates e�ective encoding of non-trivial rel-
evance information. It also helps generalize relevance infor-
mation for future retrieval with similar queries.

4.5.4 Trimming Connections and the Scale of Relevance

Another measure of the network size is the number of rele-
vance connections from input nodes to output references.
Relevance connections are indexed in a database by the
nodes they are associated with, and only the ones related



to a query need to be retrieved at a time. Unnecessary con-
nections cause wasteful storage space, and can impact the
performance of retrieval.

A connection with relevance value less than or equal to
the missing relevance (described in 4.4.3, as a result of fre-
quent negative feedback, is removed from the network. This
connection trimming process prevents the network from un-
limited addition of connections, and from keeping wasteful
information of very low relevance. The relevance measures
maintained by the network is therefore on a rational scale
between the missing relevance and one, non-linearly propor-
tional to the ratio of positive feedback. The use of a positive
scale does not deprive the network of its capability of encod-
ing negative relevance information. By trimming relevance
connections from a composite more speci�c to a query, i.e.,
a query subset composite node of larger size, positive infor-
mation carried by more general, smaller subset composites
will be ignored. Thus the e�ect of negation is supported
by the dynamic architecture of the compositional relevance
network.

5 Experimental Results

The compositional relevance network is designed to model
subjective indexing based on user preference of information
access. It is intended as an information framework which
integrates indexing structure provided by users, with index-
ing information generated by other conventional indexing
methods and/or retrieval methods speci�c to the domain of
application. For application purpose, it has been designed
to be incorporated into large-scale, complex information sys-
tems. It is therefore di�cult to test the full functionality of
the network independent of the application domain. The
user modeling perspective, in particular, requires extensive
usage testing on a real-world system tuned for speci�c appli-
cation purposes. As a �rst step, we focused on the validity
of the proposed model and report on experimental results
of the memorization capacity and generalization ability of
the compositional relevance network, with no attempt to
simulate user behavior. Real-world usage study, along with
system integration4 , is in progress.

5.1 Simulation Setup

We used two test data sets of information retrieval from
the SMART archive at the Computer Science Department
of Cornell University. The �rst is a collection of 1963 Time
Magazine news articles which consists of 425 articles and
80 queries. The second is the ISI collection of most highly
cited articles and manuscripts in information science in the
1969-1977 period, with 981 articles and 76 queries. These
experimental data sets were originally devised for the in-
vestigation of automatic indexing and document retrieval
methods. Queries of the two sets employ large vocabularies,
and extend a wide range of retrieval tasks. These are there-
fore not ideal for the testing of adaptive indexing, where
higher similarities among queries more speci�c to individual
users and/or task domains, as well as non-trivial relevance
structures between references and queries are expected. The
collections, nevertheless, were used here in our simulation
experiments to ensure objective evaluation of the composi-
tional relevance network.

Queries in these data sets are composed of common En-
glish phrases, e.g., "United Nation's e�orts to get Portugal

4The relevance network is currently being integrated into the Hy-
perman documentation system at NASA Johnson Space Center.

to free its African colonies". For our purpose, the queries
are edited into sets of keywords with simplistic stemming,
and common English words removed. Thus the above query
becomes "unite, nation, portugal, africa, colony". The par-
ticular sequential order of words in a query is not utilized.

In simulation, a query is presented to the network as a set
of descriptors, and the references retrieved by the network
are compared with the target references listed in the original
data set. Positive feedback is simulated for references that
are in the target list but are not suggested by the network.
Similarly, negative feedback is given to the network for sug-
gested references not in the original data set. Although the
compositional relevance network is designed to accommo-
date other means of retrieval, all simulation trials were con-
ducted with initially empty network, to demonstrate clearly
the functionality of the adaptive engine.

We �rst tested the memorization capacity of the com-
positional relevance network, i.e., the amount of relevance
information a network can memorize with respect to the
number of composite nodes. We then tested the generaliza-
tion capability, i.e., the ability of a trained network to derive
and suggest references for queries not previously presented
to the network.

5.2 Memorization Capacity

The Time collection was �rst used to test the memoriza-
tion capacity. Each query in this set should retrieve from
one to 18 references. Query-based insertion of composite
nodes was �rst disabled. Consequently the network did not
contain any composite nodes hence could only encode and
derive relevance information linearly5 with respect to the
basic descriptors. This network was trained with the com-
plete set of queries in random order. For each query, positive
feedback was given for all relevant references not retrieved,
and negative feedback given for irrelevant retrieval of ref-
erences not in the target set. After one complete cycle of
training, i.e., each of the queries presented once, the rele-
vance network was able to retrieve with a 100% recall6 , at
a precision7 of 93.1%. Speci�cally, all 321 relevant refer-
ences, along with 37 irrelevant ones were retrieved. This
result suggested that the data set is largely linear8 , hence
the addition of composite nodes could make limited retrieval
enhancement. Without enabling the query-based composite
node insertion algorithm, �ve composite nodes of the high-
est co-occurrence statistics among the queries were added
to the initial network. The modi�ed network was able to
improve the precision slightly to 94.8%, with 34 irrelevant
retrievals, without a�ecting the 100% recall. The perfor-
mance could not be improved further with more composites
of lower co-occurrences added.

With the query-based composite insertion enabled, the
network achieved perfect performance of 100% recall and
precision, by memorizing the target references with 80 com-
posites corresponding to the query set. When the composite
node cutting procedure is in e�ect, the network was able to
maintain perfect performance with as few as 10 composites.

Similar studies were done with the ISI data collection.
In order to better demonstrate the network's capacity to

5A network without composite nodes is actually multi-linear due
to the multiplicative relevance derivation algorithm, but can be con-
verted to linear through logarithmic transformation.

6Recall is de�ned as the proportion of relevant materials retrieved.
7Precision is de�ned as the proportion of retrieved materials that

are relevant.
8 i.e., relevance information associated with a composite node can

be derived from relevance associated with its members



encode non-trivial information, for this data set we elim-
inated query descriptors which appear in only one single
query. Two of the 76 queries were invalidated consequently,
as they became empty. The resulting set consists of queries
of sizes ranging from 2 to 15 descriptors. Each query is to
retrieve from 3 to 125 relevant references.

Di�erent numbers of composite nodes based on levels
of co-occurrence statistics were added initially. The results
are shown in Table 1. Precision and recall statistics were
collected after 1 and 3 training cycles. 100% recalls were at-
tained for all simulation runs. The network with 41 compos-
ite nodes had higher total number of irrelevant references,
yet better average precision than the network with 81 com-
posites. This is because an average precision is taken over
the precision measures of all queries, which is not the same
as a pooled-average calculated directly from the total num-
bers of relevant and irrelevant references.

Table 1: Comparison of retrieval results with di�erent num-
bers of co-occurrence based composite nodes. 100% recall of
2655 relevant references were attained in all cases.
number of average precision total number of
composites in % irrelevant references

1 cycle 3 cycles 1 cycle 3 cycles

0 78.1 78.1 2176 2176
23 85.2 86.1 1142 964
41 88.7 88.9 716 694
81 87.7 88.9 664 512
179 90.8 92.6 402 298

5.3 Generalization

Figure 5: Generalized retrieval results with unseen queries
from the Time Magazine data set
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We �rst tested the generalized retrieval capability of the
network on the Time collection data. Since this data set
is largely linear, no composite nodes were employed. Sim-
ulation tests were conducted in both full match mode and
partial match mode (described in 4.4.3). Queries from the
set are presented to the network one at a time for feedback
simulation. At the end of each query simulation, the remain-
ing queries in the set, not yet presented to the network, were
used to test the network's retrieval performance. The results
are plotted in �gure 5. With full match only, the average

generalized recall was only near 1%. This was not surprising
since many queries in this data set contained unique descrip-
tors. The precision was not available since for many queries
no reference was retrieved. With partial match, the recall
increased to 40% with half of the queries presented. Recall
statistics had wider variations at the end of the curve, as
the sample size of test queries became smaller. The average
precision in partial match retrieval remained mostly stable
at around 10%.

We then tested the ISI data set for generalized retrieval
in partial match mode. The curve of generalized recall was
similar to that of the Time data set, with a peak recall at
57.5%. Precision stayed low at around 10%. To see the
e�ect of composites on generalization, we ran another test
with 41 composites of high co-occurrences inserted to the
network after 40 of the 74 queries were trained, and the
generalization test continued afterward. The generalized re-
call performance in this case showed consistent improvement
as training continued, with a peak recall of 86% at the end.
Figure 6 shows the curves of generalized recall with and
without added composite nodes9.

Figure 6: Generalized recall results with unseen queries from
the ISI data set, with and without added composite nodes
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5.4 Discussion

Simulation tests have shown that with query-based compos-
ite insertion, a compositional relevance network is capable of
perfect memorization of relevance information based on user
feedback. Test results also suggested that, while a network
without composite nodes cannot maintain good precision of
retrieval for data sets which contain non-trivial relevance in-
formation, the precision can be signi�cantly improved with
the addition of only a small collection of composite nodes.
Composite nodes help improve precision through the pro-
vision of more speci�c information in the derivation of rel-
evance. In a real-world application, the query-based com-
posite insertion facilitates the customization of relevance in-
formation for speci�c queries of frequent usage, whereas the
co-occurrence-based composite insertion helps the establish-
ment of e�cient information structure for long-term usage.

9The very low recall rate toward the end of the dashed-curve was
partially caused by chance since only few unseen queries were left for
testing.



These two composition methods, together with the node cut-
ting procedure, work like a genetic algorithm which governs
the evolution of the relevance network architecture.

We have shown also in simulation that the network is
capable of generalizing retrieval of relevant references for
queries not previously seen, through its feedback propaga-
tion algorithm. Generalized recall is further enhanced with
the addition of composite nodes, which helps direct feedback
information to appropriate composite structures, thereby re-
leasing capacity of other parts of the network to encode more
accurate relevance information.

Simulation with partial match also incurred low preci-
sion for generalized retrieval. This is partially due to the
wide variation of relevance information of the test queries.
Also, a complete list of references retrieved in partial match
mode carries much additional relevance information, hence
inhibits high precision. In practice, users are given exible
control of the amount of information displayed. Lastly, for
simulation purpose, relevance information in a network was
not initialized. The compositional relevance network, for
application purpose, should be initialized with traditional
or other domain speci�c indexing retrieval information.

To summarize, the compositional relevance network pro-
vides an information structure which facilitates integration
of domain speci�c document indexing information and sub-
jective user preferences. The adaptive network architecture
and relevance connections support a balance between cus-
tomization and generalization, while the control of balance
between precision and recall is given to the users.

6 Conclusion

We have presented a model of subjective relevance for adap-
tive information access. The model employs a simple adap-
tive algorithm embedded in a dynamic indexing architecture
based on user feedback. It does not require any a priori spe-
cialized index structure, nor any a priori statistical knowl-
edge or computation. We have shown that with query-based
composite insertion, a relevance network is capable of perfect
memorization of relevance information based on user feed-
back. We have shown also that through its feedback prop-
agation algorithm, a network is capable of generalizing re-
trieval of relevant references for queries not previously seen.
While the query-based composite insertion facilitates the
customization of relevance information for speci�c queries of
frequent usage, the co-occurrence-based composite insertion
helps the establishment of e�cient information structure for
long term usage. A relevance network can adapt to speci�c
user needs, or it can generalize over multi-user information
requirements, supporting sharing and collaborative work.
The model can be easily integrated with traditional infor-
mation retrieval methods to provide user-centered, rapid in-
formation access.

References

[1] R.K. Belew. Adaptive information retrieval: Using a
connectionist representation to retrieve and learn about
documents. In Proc. of the 12th SIGIR Conference,
pages 11{20, 1989.

[2] D. Benyon and D. Murray. Developing adaptive sys-
tems to �t individual needs. In Proc. of the 3rd Inter-
nationalWorkshop on Intelligent User Interfaces, pages
115{121, 1993.

[3] Baudin C., S. Kedar, J. Underwood, and V. Baya.
Question-based acquisition of conceptual indices for
multimedia design documentation. In Proc. of the 11th
National Conference on Arti�cial Intelligence, pages
452{458, 1993.

[4] J.P. Callan, W.B. Croft, and S.M. Harding. The in-
query retrieval system. In Proc. of the 3rd International
Conference on Database and Expert Systems Applica-
tions, pages 78{83, 1992.

[5] H. Chen. Machine learning for information retrieval:
Neural networks, symbolic learning, and genetic algo-
rithms. Journal of the American Society for Informa-
tion Science, 46(3):194{216, 1995.

[6] A. Cypher. Programming repetitive tasks by example.
In Proc. of the ACM Conference on Computer Human
Interaction, pages 33{39, 1991.

[7] S.T. Dumais, G.W. Furnas, T.K. Landauer, S. Deer-
wester, and R. Harshman. Using latent semantic anal-
ysis to improve access to textual information. In CHI'88
Proceedings, pages 281{285, 1988.

[8] M.E. Frisse and S.B. Cousins. Information retrieval
from hypertext: Update on the dynamic medical hand-
book project. In Proc. of the ACM Conference on Hy-
pertext, pages 199{212, 1989.

[9] D. Haines and W.B. Croft. Relevance feedback and
inference networks. In Proc. of the 16th Annual Inter-
national ACM SIGIR Conference, pages 2{10, 1993.

[10] C. Kaplan, J. Fenwick, and J.R. Chen. Adaptive hyper-
text navigation based on user goals and context. User
Modeling and User Adapted Interaction, pages 193{220,
1993.

[11] P. Maes and R. Kozierok. Learning interface agents.
In Proc. of the 11th National Conference on Arti�cial
Intelligence, pages 91{99, 1993.

[12] N. Math�e and J.R. Chen. A user-centered approach to
adaptive hypertext based on an information relevance
model. In Proc. of the Fourth International Conference
on User Modeling, pages 107{114, 1994.

[13] G. Salton. Automatic Text Processing: the transforma-
tion, analysis, and retrieval of information by comput-
ers. Addison Wesley, 1989.

[14] M. Schneider-Hufschmidt, T. Kuhme, and U. Mali-
nowski, editors. Adaptive User Interfaces - Principles
and Practice. North-Holland, 1993.

[15] J.W. Sullivan and S.W. Tyler, editors. Intelligent User
Interfaces. ACM, 1991.


